405 research outputs found

    Constraining the evolution of the CMB temperature with SZ measurements from Planck data

    Full text link
    The CMB temperature-redshift relation, T_CMB(z)=T_0(1+z), is a key prediction of the standard cosmology, but is violated in many non standard models. Constraining possible deviations to this law is an effective way to test the LambdaCDM paradigm and to search for hints of new physics. We have determined T_CMB(z), with a precision up to 3%, for a subsample (104 clusters) of the Planck SZ cluster catalog, at redshift in the range 0.01-- 0.94, using measurements of the spectrum of the Sunyaev Zel'dovich effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T_CMB(z) at cluster redshift relies on the use of SZ intensity change, Delta I_SZ(nu), at different frequencies, and on a Monte-Carlo Markov Chain approach. By applying this method to the sample of 104 clusters, we limit possible deviations of the form T_CMB(z)=T_0(1+z)^(1-beta) to be beta= 0.022 +/- 0.018, at 1 sigma uncertainty, consistent with the prediction of the standard model. Combining these measurements with previously published results we get beta=0.016+/-0.012.Comment: submitted to JCAP, 21 pages, 8 figure

    Lateral patellar luxation in nine small breed dogs

    Get PDF
    The objective of this paper was to describe the clinical features, the management and the outcome of nine small breed dogs affected with lateral patella luxation referred during the period between January 2010 and December 2014. Patellar luxations were classified according to: breed, age, sex, weight, and grade of patellar luxation, as well as if unilateral or bilateral, and concurrent cranial cruciate ligament lesion. In affected dogs, surgical correction consisted in the combination of tibial tuberosity transposition and soft tissue procedure. Adjunctive condroplasty or trochleoplasty was performed as needing. The outcome was found positive after surgical management with low complication rate and complications have been easily managed with high success rate

    Traumatic lumbosacral joint dislocation in 3 dogs: Clinical presentation, diagnosis, treatment and short-term follow-up

    Get PDF
    Traumatic lumbosacral joint dislocation (TLSJD) without L7 vertebral body fracture is a rare injury in dogs. This report describes clinical presentation, therapy and outcome in 3 dogs. Three crossbreed dogs with non-ambulatory paraparesis and lumbar pain were referred. Radiographs confirmed TLSJD and dorso-ventral displacement (DVD) was measured pre and postoperatively. Case 1 was treated by percutaneous transilial pinning. Cases 2 and 3 were treated by internal fixation with pins and PMMA. Within 72h after surgery all dogs were able to stand and walk, and faecal incontinence resolved. To the author's knowledge this is the first description of a case series of TLSJD in the dog. The biomechanics of TLSJD in animals have not been investigated. It is likely that a single trauma severely hyper-extends L7-S1 causing disruption of the supra and inter-spinous ligaments with simultaneous shear and compression forces that cause ventral slipping of the sacrum. Pins and PMMA compared to percutaneous transilial pinning, provided more strength and stability. In conclusion, TLSJD requires appropriate surgical reduction and stabilization to allow fibrous healing of the L7-S1 junction, resulting in satisfactory neurological recovery

    Kinetic Inductance Detectors for the OLIMPO experiment: design and pre-flight characterization

    Get PDF
    We designed, fabricated, and characterized four arrays of horn--coupled, lumped element kinetic inductance detectors (LEKIDs), optimized to work in the spectral bands of the balloon-borne OLIMPO experiment. OLIMPO is a 2.6 m aperture telescope, aimed at spectroscopic measurements of the Sunyaev-Zel'dovich (SZ) effect. OLIMPO will also validate the LEKID technology in a representative space environment. The corrected focal plane is filled with diffraction limited horn-coupled KID arrays, with 19, 37, 23, 41 active pixels respectively at 150, 250, 350, and 460 \:GHz. Here we report on the full electrical and optical characterization performed on these detector arrays before the flight. In a dark laboratory cryostat, we measured the resonator electrical parameters, such as the quality factors and the electrical responsivities, at a base temperature of 300 \:mK. The measured average resonator QQs are 1.7×104\times{10^4}, 7.0×104\times{10^4}, 1.0×104\times{10^4}, and 1.0×104\times{10^4} for the 150, 250, 350, and 460 \:GHz arrays, respectively. The average electrical phase responsivities on resonance are 1.4 \:rad/pW, 1.5 \:rad/pW, 2.1 \:rad/pW, and 2.1 \:rad/pW; the electrical noise equivalent powers are 45 aW/Hz\:\rm{aW/\sqrt{Hz}}, 160 aW/Hz\:\rm{aW/\sqrt{Hz}}, 80 aW/Hz\:\rm{aW/\sqrt{Hz}}, and 140 aW/Hz\:\rm{aW/\sqrt{Hz}}, at 12 Hz. In the OLIMPO cryostat, we measured the optical properties, such as the noise equivalent temperatures (NET) and the spectral responses. The measured NETRJ_{\rm RJ}s are 200 μKs200\:\mu\rm{K\sqrt{s}}, 240 μKs240\:\mu\rm{K\sqrt{s}}, 240 μKs240\:\mu\rm{K\sqrt{s}}, and  340μKs\:340\mu\rm{K\sqrt{s}}, at 12 Hz; under 78, 88, 92, and 90 mK Rayleigh-Jeans blackbody load changes respectively for the 150, 250, 350, and 460 GHz arrays. The spectral responses were characterized with the OLIMPO differential Fourier transform spectrometer (DFTS) up to THz frequencies, with a resolution of 1.8 GHz.Comment: Published on JCA

    Millimeter and sub-millimeter atmospheric performance at Dome C combining radiosoundings and ATM synthetic spectra

    Full text link
    The reliability of astronomical observations at millimeter and sub-millimeter wavelengths closely depends on a low vertical content of water vapor as well as on high atmospheric emission stability. Although Concordia station at Dome C (Antarctica) enjoys good observing conditions in this atmospheric spectral windows, as shown by preliminary site-testing campaigns at different bands and in, not always, time overlapped periods, a dedicated instrument able to continuously determine atmospheric performance for a wide spectral range is not yet planned. In the absence of such measurements, in this paper we suggest a semi-empirical approach to perform an analysis of atmospheric transmission and emission at Dome C to compare the performance for 7 photometric bands ranging from 100 GHz to 2 THz. Radiosoundings data provided by the Routine Meteorological Observations (RMO) Research Project at Concordia station are corrected by temperature and humidity errors and dry biases and then employed to feed ATM (Atmospheric Transmission at Microwaves) code to generate synthetic spectra in the wide spectral range from 100 GHz to 2 THz. To quantify the atmospheric contribution in millimeter and sub-millimeter observations we are considering several photometric bands in which atmospheric quantities are integrated. The observational capabilities of this site at all the selected spectral bands are analyzed considering monthly averaged transmissions joined to the corresponding fluctuations. Transmission and pwv statistics at Dome C derived by our semi-empirical approach are consistent with previous works. It is evident the decreasing of the performance at high frequencies. We propose to introduce a new parameter to compare the quality of a site at different spectral bands, in terms of high transmission and emission stability, the Site Photometric Quality Factor.Comment: accepted to MNRAS with minor revision

    Bistability in the Tunnelling Current through a Ring of NN Coupled Quantum Dots

    Full text link
    We study bistability in the electron transport through a ring of N coupled quantum dots with two orbitals in each dot. One orbital is localized (called b orbital) and coupling of the b orbitals in any two dots is negligible; the other is delocalized in the plane of the ring (called d orbital), due to coupling of the d orbitals in the neighboring dots, as described by a tight-binding model. The d orbitals thereby form a band with finite width. The b and d orbitals are connected to the source and drain electrodes with a voltage bias V, allowing the electron tunnelling. Tunnelling current is calculated by using a nonequilibrium Green function method recently developed to treat nanostructures with multiple energy levels. We find a bistable effect in the tunnelling current as a function of bias V, when the size N>50; this effect scales with the size N and becomes sizable at N~100. The temperature effect on bistability is also discussed. In comparison, mean-field treatment tends to overestimate the bistable effect.Comment: Published in JPSJ; minor typos correcte

    Millimetric observations with a high-altitude 2.6-m ground based telescope

    Get PDF
    High atmospheric performances are necessary to ensure efficient sub/millimetre cosmological observations from ground. Low atmospheric components fluctuations along the line of sight are a must for best detector applications. Such site constraints are attained only at in specific places around the world: highaltitude observatories or, equivalently, polar regions. We are currently involved in cosmological observations with the MITO project from an Alpine ground station which satisfies such requirements: the Testa Grigia mountain at 3500 m a.s.l., AO—Italy. The Chacaltaya laboratory at 5200 m a.s.l. could also be an appropriate mm-site. One of the goals of MITO is the multifrequency observation of nearby rich clusters of galaxies for measuring the Sunyaev-Zel’dovich effect. Combined S-Z and X-ray measurements yield the Hubble constant and other cosmological information. A dedicated instrument has been designed to minimize spurious contaminations on the signals. The telescope is a 2.6 m Cassegrain with a wobbling subreflector and a 4-band single pixel photometer installed at the focal plane. The bolometric detectors are cooled down to 300 mK by a double stage He3-He4 fridge

    Millimetric observations with a high-altitude 2.6-m ground based telescope

    Get PDF
    High atmospheric performances are necessary to ensure efficient sub/millimetre cosmological observations from ground. Low atmospheric components fluctuations along the line of sight are a must for best detector applications. Such site constraints are attained only at in specific places around the world: highaltitude observatories or, equivalently, polar regions. We are currently involved in cosmological observations with the MITO project from an Alpine ground station which satisfies such requirements: the Testa Grigia mountain at 3500 m a.s.l., AO—Italy. The Chacaltaya laboratory at 5200 m a.s.l. could also be an appropriate mm-site. One of the goals of MITO is the multifrequency observation of nearby rich clusters of galaxies for measuring the Sunyaev-Zel’dovich effect. Combined S-Z and X-ray measurements yield the Hubble constant and other cosmological information. A dedicated instrument has been designed to minimize spurious contaminations on the signals. The telescope is a 2.6 m Cassegrain with a wobbling subreflector and a 4-band single pixel photometer installed at the focal plane. The bolometric detectors are cooled down to 300 mK by a double stage He3-He4 fridge

    The Large-Scale Polarization Explorer (LSPE)

    Full text link
    The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB) at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by tensor perturbations generated during cosmic inflation, in the very early universe. Its primary target is to improve the limit on the ratio of tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7% confidence. A second target is to produce wide maps of foreground polarization generated in our Galaxy by synchrotron emission and interstellar dust emission. These will be important to map Galactic magnetic fields and to study the properties of ionized gas and of diffuse interstellar dust in our Galaxy. The mission is optimized for large angular scales, with coarse angular resolution (around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload will fly in a circumpolar long duration balloon mission during the polar night. Using the Earth as a giant solar shield, the instrument will spin in azimuth, observing a large fraction of the northern sky. The payload will host two instruments. An array of coherent polarimeters using cryogenic HEMT amplifiers will survey the sky at 43 and 90 GHz. An array of bolometric polarimeters, using large throughput multi-mode bolometers and rotating Half Wave Plates (HWP), will survey the same sky region in three bands at 95, 145 and 245 GHz. The wide frequency coverage will allow optimal control of the polarized foregrounds, with comparable angular resolution at all frequencies.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite
    • …
    corecore